22 research outputs found

    Machine Learning based Energy Management Model for Smart Grid and Renewable Energy Districts

    Get PDF
    The combination of renewable energy sources and prosumer-based smart grid is a sustainable solution to cater to the problem of energy demand management. A pressing need is to develop an efficient Energy Management Model (EMM) that integrates renewable energy sources with smart grids. However, the variable scenarios and constraints make this a complex problem. Machine Learning (ML) methods can often model complex and non-linear data better than the statistical models. Therefore, developing an ML algorithm for the EMM is a suitable option as it reduces the complexity of the EMM by developing a single trained model to predict the performance parameters of EMM for multiple scenarios. However, understanding latent correlations and developing trust in highly complex ML models for designing EMM within the stochastic prosumer-based smart grid is still a challenging task. Therefore, this paper integrates ML and Gaussian Process Regression (GPR) in the EMM. At the first stage, an optimization model for Prosumer Energy Surplus (PES), Prosumer Energy Cost (PEC), and Grid Revenue (GR) is formulated to calculate base performance parameters (PES, PEC, and GR) for the training of the ML-based GPR model. In the second stage, stochasticity of renewable energy sources, load, and energy price, same as provided by the Genetic Algorithm (GA) based optimization model for PES, PEC, and GR, and base performance parameters act as input covariates to produce a GPR model that predicts PES, PEC, and GR. Seasonal variations of PES, PEC, and GR are incorporated to remove hitches from seasonal dynamics of prosumers energy generation and prosumers energy consumption. The proposed adaptive Service Level Agreement (SLA) between energy prosumers and the grid benefits both these entities. The results of the proposed model are rigorously compared with conventional optimization (GA and PSO) based EMM to prove the validity of the proposed model

    An Adaptive Distributed Averaging Integral Control Scheme for Micro-Grids with Renewable Intermittency and Varying Operating Cost

    Get PDF
    The increasing penetration of intermittent renewable energy resources in micro-grids poses several issues, such as stochastic power generation, demand and supply miss-match, frequency fluctuation, and economic dispatch problems. To address such critical issues, a distributed secondary control scheme based for micro-grids with varying operating cost and intermittent renewable energy resources is proposed for frequency regulation and economic load dispatch. The paper presents an adaptive distributed averaging integral control scheme with conditional uncertainties, namely varying operating costs, and renewable intermittency. The proposed control scheme adapts to the uncertainties by updating the control law parameters dynamically and can maintain overall network stability. The distributed control scheme employs communication channels for exchange of generation data from the neighboring power units for optimal power sharing and consensus among the power units. An additional controller at tertiary control layer of the hierarchical control architecture is also augmented in the control structure to economically dispatch the load and the consensus-based algorithm guarantees optimal load sharing. The proposed communication based control scheme reveals the best combination of performance and flexibility. A performance-based comparative analysis is also presented, validating the effectiveness of the proposed control scheme compared to the prior works. The robustness and performance of the proposed control scheme is illustrated through computer simulations

    Microalgae as second generation biofuel. A review

    Full text link
    corecore